68. Palladium-Catalyzed Syntheses of Polyethynyl-Substituted 2,2'-Bithiophenes

by Uwe Dahlmann and Richard Neidlein*

Pharmazeutisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg

Dedicated to Prof. Dr. Miha Tišler, Ljubljana/Slovenia, on the occasion of his 70th birthday

(5.II.96)

The syntheses of polyethynyl-substituted 2,2'-bithiophenes 2 and related 5,5'-dicarbaldehyde derivatives 1 are described. The treatment of easily available polybrominated 2,2'-bithiophenes 3 and 2,2'-bithiophene-5,5'-dicarbaldehydes 4 with phenyl or (trimethylsilyl)acetylene in the presence of Pd^{II} and Cu^I in (i-Pr)₂NH yields substituted polyethynyl-2,2'-bithiophene compounds. The Me₃Si protecting groups can be removed by protodesilylation under basic conditions to give the corresponding terminal ethynyl groups. These polyethynyl-bithiophenes could be interesting precursors for the synthesis of macrocycles with interesting properties.

Introduction. – The development of new synthetic strategies for the syntheses of porphyrins, porphycenes, and related conjugated macrocycles has recently received much attention because of their special aromatic properties as annulene derivatives [1] as well as their potential for use as photosensitizers [2]. There have been a number of investigations in the recent past concerning the use of porphyrins for biomedical applications such as fluorescence detection, viral inhibition [3], and photodynamic tumor therapy (PDT) [4].

Many attempts have been made to modify the porphyrin ring system to create new chromophores. Inverted [5] and expanded porphyrinoides [6] as well as porphycenes, hemiporphycenes, and corrphycenes [7] have been synthesized. Heterocyclic analogs of this class of compounds have also been reported [8].

Prompted by the observation of *Vogel, Schaffner* and coworkers [9], which showed the potential of acetylenic and cumulenic porphycene derivatives as PDT agents, we investigated the syntheses of S-containing porphycene analogs, namely 21,23-dithiaporphycene and tetrathiaporphycene [10]. The 2,2'-bithiophenes (=2,2'-bithienyls), the major component of the thiaporphycene system, have also been reported to possess interesting properties. Naturally occurring bithiophenes, specifically acetylenic derivatives, show nematolocidal, as well as antibiotic, ovicidal, algicidal, larvicidal, and antifeedant properties [11]. These 2,2'-bithiophene compounds have also been shown to inhibit germination and cell growth [12] and are phototoxic to some aquatic organisms [13]. By combining the properties found in porphycenes and those found in alkynyl-substituted bithiophenes, alkynylated thiaporphycenes should produce a group of macrocycles with high biological activity.

Presently, the most efficient route to porphycenes and analogous systems involves the intermolecular dimerization of carbonyl compounds with low-valent titanium, the so-called McMurry reaction [7] [10] [14]. We planned to apply this methodology to the

synthesis of various alkynylated tetrathiaporphycenes starting from the corresponding 2,2'-bithiophene-5,5'-dicarbaldehydes 1.

The preparation of ethynyl-substituted bithiophene derivatives has not received much attention. To the best of our knowledge, a synthesis of these compounds, which could also function as building blocks for the construction of heterocyclic carbon-rich materials [15], has not been reported. Thus, our first task was to develop and efficient synthesis of ethynyl-bithiophene derivatives. Given the inherent aromatic character of thiophenes, the Pd^{II}-catalyzed coupling of acetylenes to the readily available halogenated bithiophene derivatives seemed to be the most promising synthetic strategy [16]. Polybrominated bithiophenes **3**, obtained by the bromination of bithiophene or by the oxidative coupling of brominated thienyllithium derivatives, proved to be suitable starting materials for the syntheses of compounds of structure **1** and **2**.

Results and Discussion. – Polybrominated 2,2'-bithiophenes are accessible by two general methods (*Scheme 1*). According to *Töhl* and *Auwers* [17], the treatment of 2,2'-bithiophene with Br_2 in AcOH produces 5,5'-dibromo-2,2'-bithiophene (**3c**) in reasonable yield. However, attempts to introduce additional Br-substituents with a large excess of Br_2 and long reaction times led to unsatisfactory results. Further investigation showed that the bromination of 2,2'-bithiophene is much more efficient and selective, when *N*-bromosuccinimide (NBS) in CHCl₃/AcOH is used. It has been reported that

5,5'-dibromo-2,2'-bithiophene (3c) [18] is prepared in quantitative yield using this method. Under these reaction conditions (*Method A*), the synthesis of 3c was reproduced and extended to 3,3',5,5'-tetrabromo-2,2'-bithiophene (3c) and the hexabrominated derivative 3f (*Scheme I*).

Gronowitz [19] reported the synthesis of 3,3'-dibromo-2,2'-bithiophene (**3a**) by oxidative coupling of regioselectively α -lithiated bromothiophene derivatives [20] with CuCl₂ in Et₂O at -78° (*Method B*; *Scheme 1*). In addition to the polybromo-2,2'-bithiophenes **3c**, **e**, **f** (independently prepared by *Method A*), 4,4'-dibromo-2,2'-bithiophene (**3b**) and 3,3',4,4'-tetrabromo-2,2'-bithiophene (**3d**) were readily obtained in high yields by the *Gronowitz* approach. The 4,4',5,5'-tetrabromo-2,2'-bithiophene (**3g**) could only be obtained using a combination of *Methods A* and B: 4,4'-dibromo derivative **3b**, prepared by *Method B*, was treated with NBS according to *Method A* to give **3g** in excellent yield (*Scheme 1*).

The introduction of two formyl substituents in the 5,5'-positions of bromobithiophenes can be accomplished by direct bromination of 2,2'-bithiophene-5,5'-dicarbaldehyde, but this reaction proceeds only in low yields [21]. However, starting from the above described polybromo-2,2'-bithiophenes **3e-g**, we could obtain the brominated 2,2'bithiophene-5,5'-dicarbaldehydes **4a-c** in good yields by regioselective α -lithiation with 2 equiv. of BuLi in Et₂O followed by treatment with dimethylformamide (DMF) at -78° (*Scheme 2*).

Functionalized 2,2'-bithiophene derivatives provided excellent starting materials for the preparation of polyethynyl-2,2'-bithiophenes of structures 1 and 2. First attempts at the alkynylation of the brominated 2,2'-bithiophenes 3a-g involved the modified *Heck*-coupling reaction with catalytic amounts of dichlorobis(triphenylphosphine)palladium(II) as published by *Hagihara* and coworkers [22]. Using these conditions, however, the desired products were obtained in low yields. We, therefore, turned our attention to a method developed by *Neenan* and *Whitesides* [23] who prepared polyethynylthiophenes using a dichlorobis(benzonitrile)palladium(II)CuI/PPh₃ catalyst system in (i-Pr)₂NH. In our studies, when phenylacetylene and (trimethylsilyl)acetylene were used as alkynylation partners for the brominated 2,2'-bithiophenes 3a-g, compounds 2a-o were obtained in very good yields (*Scheme 3*).

In spite of using a large excess of phenylacetylene (12 equiv.) and a reaction time of 4 h at 70° in the synthesis of 3,3',4,4',5,5'-hexakis(phenylethynyl)-2,2'-bithiophene (**20**), we isolated the desired product in only 46% yield, besides 27% of incompletely alkynylated 4-bromo-pentakis(phenylethynyl)-2,2'-bithiophene **2p** as major by-product (*Scheme 3*).

The substitution pattern of **2p** could not be conclusively explained by spectroscopic methods. Based on the comparison of its ¹³C-NMR data with those of other phenylethynylated 2,2'-bithiophenes described here and the known differences in reactivity between the 3-, 4-, and 5-positions, and symmetry-related positions of the bithiophene system [24], it can be suggested that the structure of **2p** is as shown. Complete conversion of **3f** to the hexaethynyl derivative **2o** was achieved using a large excess (30 equiv.) of phenylacetylene and heating under reflux for 24 h. The observed reactivity leads to the conclusion that the level of alkynylation can be controlled through variations in temperature. *E.g.*, when a large excess of phenylacetylene was used, but the reaction was conducted at room temperature, only the dialkynylated product 3,3',4,4'-tetrabromo-5,5'-bis(phenylethynyl)-2,2'-bithiophene (**2r**) was obtained from **3f** (*Scheme 3*).

The syntheses of the polyethynyl-2,2'-bithiophenes $2\mathbf{a}-\mathbf{r}$ with the [Pd(PhCN)₂Cl₂]/ PPh₃/CuI catalyst system in (i-Pr)₂NH suggest that this system is well suited for the alkynylation of thiophene analogs. However, application of these conditions to the alkynylation of the polybromo-2,2'-bithiophene-5,5'-dicarbaldehydes $4\mathbf{a}-\mathbf{c}$ gave poor

results, due to the low solubility of these compounds in $(i-Pr)_2NH$. By replacing $(i-Pr)_2NH$ with benzene/ $(i-Pr)_2NH$ 3:1 (ν/ν) , the (trimethylsilyl)ethynyl and phenylethynyl derivatives **1a**-**f** were obtained in moderate-to-good yields (*Scheme 4*).

The terminally unprotected ethynylbithiophenes could be easily prepared by protodesilylation with K_2CO_3 in degassed MeOH (*Scheme 5*). Because of the instability of the polyethynylated 2,2'-bithiophenes **5a**–e, isolation and complete characterization was extremely difficult. In the case of the 5,5'-dicarbaldehydes **1a–c**, protodesilylation was not successful.

In conclusion, we have shown that the easily obtained brominated 2,2'-bithiophenes 3a-f and 2,2'-bithiophene-5,5'-dicarbaldehydes 4a-c can be converted to the polyethynylbithiophene derivatives 1a-f and 2a-r by Pd^{II} -catalyzed coupling reactions. The alkynylsubstitued 5,5'-dicarbaldehydes 1a-f are potential intermediates in the synthesis of alkynylated tetrathiaporphycenes. Derivatives such as 1a, d, 2a, f, h, n, and 5a, e, which may adopt a conformation that allows for the reaction of the acetylenic moieties with transition-metal complexes, could provide a route to thia derivatives of polycyclic aromatic hydrocarbons [25]. Work in this direction is in progress.

We thank BASF AG, Bayer AG, and Hoechst AG, the Verband der Chemischen Industrie, Fonds der Chemie, as well as the Deutsche Forschungsgemeinschaft for support of this work. Thanks go to Hewlett Packard and Varian for providing UV/VIS spectrometers and Dr. J. Fröhlich, Vienna, for providing samples of 2,2'-bithiophene derivatives. We would also like to thank Ms. U. Hertle and Dr. W. Kramer for NMR spectra, Mr. H. Rudy and Mr. P. Weyrich for elemental analysis and mass spectra, Dr. R. Faust for many helpful discussions, and Mrs. A. Bryant-Friedrich, M.Sc., for help with the manuscript.

Experimental Part

General. All reactions were carried out under Ar in flame-dried glassware. (i-Pr)₂NH was freshly distilled from KOH, Et₂O and benzene were distilled from sodiumbenzophenone before use. Column chromatography (CC): silica gel (60–200 mesh) from *ICN-Biomedicals*. M.p.: *Reichert* melting-point microscope; uncorrected. UV/VIS Spectra: *Hewlett Packard HP 8453 UV-Vis ChemStation* and *Varian CARY 2200* spectrophotometer; CH₂Cl₂ solns.; in nm (lg ε). IR Spectra: *Perkin-Elmer PE-1600-FT-IR* spectrophotometer; KBr pellets; \tilde{v} in cm⁻¹. ¹H-NMR Spectra: *Bruker-WM-250* spectrometer (at 250.13 MHz) and *Varian-XL-300* spectrometer (at 299.95 MHz), δ in ppm rel. to Me₄Si, J in Hz. ¹³C-NMR Spectra: at 62.89 and 75.43 MHz on the same spectrometers. MS: *Varian-MAT-311-A* mass spectrometer at 70 eV; *m/z* (rel. %). Elemental analyses: *Foss-Heraeus Vario EL*.

Brominated 2,2'-Bithiophenes 3 Starting from 2,2'-Bithiophene (Method A): General Procedure. To a soln. of 2,2'-bithiophene (0.01 mol, 1.66 g) in CHCl₃/AcOH 1:1 (ν/ν ; 100 ml) was added NBS (1.05 n mol-equiv.) in one portion. The reaction started instantly at r.t. The mixture was then warmed to 70° and, after stirring under reflux for 4 h, allowed to cool to r.t., diluted with CHCl₃(3**a**-**c**) or CS₂(3**d**-**g**), and washed with KOH soln. until basic and then with H₂O. The org. layer was dried (MgSO₄) and evaporated.

Brominated 2,2'-Bithiophenes 3 Starting from Bromothiophene Derivatives (Method B): General Procedure. Anh. CuCl₂ (4 g, 0.03 mol) was added to a soln. of brominated 2-thienyllithium in abs. Et₂O (150 ml) at -78° (the 2-thienyllithium was prepared in the usual way by treating 0.02 mol of the corresponding 2- bromothiophene and 8.4 ml (0.021 mol) of 2.5M BuLi in hexane at -78°). After stirring at -78° for 2 h, the mixture was allowed to warm to r.t. overnight and then treated with 5N HCl at 0°. The Et₂O phase was diluted with CHCl₃ (**3a-c**) or CS₂ (**3d-g**), extracted with 5N HCl to remove residual CuCl₂, washed with H₂O, dried (MgSO₄), and evaporated.

3,3'-Dibromo-2,2'-bithiophene (3a) [19] (Method B): Pure 3a was obtained by bulb-to-bulb distillation (b.p. $100-120^{\circ}/6 \cdot 10^{-3}$ mbar) and recrystallization from petroleum ether (90–110): 2.47 g (76.2%). Colorless crystals. M.p. 98–100°. IR (KBr): 3104m, 3083w, 1553w, 1487s, 1444s, 1401w, 1340s, 1132m, 1077m, 1071w, 926m, 857s, 805m, 794m, 720s, 706s, 672m, 640m, 596s, 512w, 487w. ¹H-NMR (300 MHz, CDCl₃): 7.39 (d, ³J = 5.4, 2 H); 7.07 (d, ³J = 5.4, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 130.58; 128.50; 127.28; 112.45. EI-MS: 324 (100, M⁺), 243 (20, [M-Br]⁺), 164 (70, [M - 2 Br]⁺). HR-MS: 321.8121 (C₈H₄⁷⁹Br₂S²₂; calc. 321.8121). Anal. calc. for C₈H₄Br₂S₂: C 29.65, H 1.24, Br 49.32, S 19.79; found: C 29.63, H 1.26, Br 49.02, S 20.09.

4.4'-Dibromo-2,2'-bithiophene (**3b**; Method B): Recrystallization from EtOH or benzene gave pure **3b**: 2.29 g (70.7%). Colorless flakes. M.p. 131°. IR (KBr): 3108*s*, 3077*w*, 1490*s*, 1295*m*, 1177*w*, 910*s*, 840*m*, 812*s*, 795*m*, 733*s*, 580*s*. ¹H-NMR (300 MHz, CDCl₃): 7.13 (*d*, ⁴*J* = 1.3, 2 H); 7.06 (*d*, ⁴*J* = 1.3, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 136.82; 126.48; 122.06; 110.34. EI-MS: 324 (100, M^+), 243 (15, $[M - Br]^+$). 164 (30, $[M - 2 Br]^+$), 162 (10, $M^+/2$). HR-MS: 323.8101 (C₈H₄⁷⁹Br⁸¹BrS²; calc. 323.8101). Anal. calc. for C₈H₄Br₂S₂: C 29.65, H 1.24, Br 49.32, S 19.79; found: C 29.56, H 1.25, Br 49.62, S 19.57.

5,5'-Dibromo-2,2'bithiophene (3c) [17] [18] (*Method A* and *B*): Recrystallization from EtOH or benzene gave pure 3c: 3.08 g (95.1%; *Method A*) and 2.79 g (86.1%; *Method B*). Colorless flakes. M.p. 149°. IR (KBr): 3092w, 3068w, 3038w, 1505m, 1417s, 1198m, 1058m, 970m, 867m, 794s, 627m, 457s. ¹H-NMR (250 MHz, CDCl₃): 6.96 (*d*, ${}^{3}J = 3.8, 2$ H); 6.84 (*d*, ${}^{3}J = 3.8, 2$ H). ¹³C-NMR (63 MHz, CDCl₃): 137.78; 130.64; 124.13; 111.52. EI-MS: 324 (100, *M*⁺), 243 (40, [*M* - Br]⁺), 164 (50, [*M* - 2 Br]⁺), 82 (70, [*M* - 2 Br - C₄H₂S]⁺). HR-MS: 321.8121 (C₈H₄⁷⁹Br₂S⁺; calc. 321.8121). Anal. calc. for C₈H₄Br₂S₂: C 29.65, H 1.24, Br 49.32, S 19.79; found: C 29.70, H 1.35, Br 49.24, S 19.71.

3,3',4,4'-Tetrabromo-2,2'-bithiophene (**3d**, Method B): Recrystallization from EtOH or benzene gave pure **3d**: 3.3 g (69.1%). Colorless needles. M.p. 108–109°. IR (KBr): 3100m, 1465s, 1319w, 1303s, 1251w, 930m, 882w, 849m, 787w, 743s, 664m, 619w. ¹H-NMR (300 MHz, CDCl₃): 7.51 (s, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 129.58; 124.96; 116.58; 114.41. EI-MS: 482 (100, M^+), 401 (5, $[M - Br]^+$), 322 (55, $[M - 2 Br]^+$), 241 (15, $[M - 3 Br]^+$), 162 (25, $[M - 4 Br]^+$). HR-MS: 481.6290 (C₈H₂⁷⁹Br₂⁸¹Br₂S²; calc. 481.6290). Anal. calc. for C₈H₂Br₄S₂: C 19.94, H 0.42, Br 66.33, S 13.31; found: C 20.17, H 0.49, Br 65.82, S 13.52.

3,3',5,5'-Tetrabromo-2,2'-bithiophene (**3e**) [17] (*Method A* and *B*): Pure **3e** was obtained by sublimation at $105-110^{\circ}/8 \cdot 10^{-3}$ mbar and recrystallization from EtOH or benzene: 4.34 g (90.0%; *Method A*) and 3.88 g (80.5%; *Method B*). Colorless crystals. M.p. 137-138°. IR (KBr): 3100w, 1483m, 1395w, 1292w, 1130w, 982m, 830w, 804s, 668w, 587w, 472w. ¹H-NMR (300 MHz, CDCl₃): 7.04 (*s*, 2 H). ¹³C-NMR (63 MHz, CDCl₃): 132.99; 129.56; 114.81; 112.11. ¹³C-NMR (63 MHz, CS₂/(D₆)aceton 2:1, gated decoupling): 133.57 (¹J(C(3),H) = 180.4); 130.03 (³J(C(2),H) = 9.18); 115.73 (²J(C(4),H) = 0.89); 112.97 (²J(C(2),H) = 1.78). EI-MS: 482 (100, *M*⁺), 401 (20, [*M* - Br]⁺), 322 (70, [*M* - 2 Br]⁺), 241 (30, [*M* - 3 Br]⁺), 162 (95, [*M* - 4 Br]⁺). HR-MS: 481.6290 (C₈H₂⁷⁹Br₂⁸¹Br₂S⁺; calc. 481.6290). Anal. calc. for C₈H₂Br₄S₂: C 19.94, H 0.42, Br 66.33, S 13.31; found: C 19.71, H 0.56, Br 66.26, S 13.47.

3,3',4,4',5,5'-Hexabromo-2,2'-bithiophene (3f) [17] (*Method A* and *B*): Recrystallization of the residue from benzene gave pure 3f: 3.89 g (60.8%; *Method A*) and 4.10 g (83.6%; *Method B*). Colorless needles. M.p. 254–256°. IR (KBr): 1468s, 1388m, 1290m, 1275s, 1249w, 1099w, 901w, 840m, 793w, 713m, 499w. ¹³C-NMR (75 MHz), CS₂/CDCl₃ 1:1): 140.45; 118.54; 115.98; 113.51. EI-MS: 640 (100, M^+), 559 (20, $[M - Br]^+$), 480 (5, $[M - 2 Br]^+$), 399 (5, $[M - 3 Br]^+$), 320 (5, $[M - 4 Br]^+$), 239 (5, $[M - 5 Br]^+$), 160 (5, $[M - 6 Br]^+$). HR-MS: 639.4481 (C₈⁷⁹Br₃⁸¹Br₃S₂⁺; calc. 639.4480). Anal. calc. for C₈Br₆S₂: C 15.02, Br 74.96, S 10.02; found: C 15.22, Br 74.78, S 10.00.

4,4',5,5'-Tetrabromo-2,2'-bithiophene (**3g**; Method A, from **3b**): Recrystallization from EtOH or benzene gave pure **3g**: 4.53 g (94.0%). Colorless needles. M.p. 179–180°. IR (KBr): 3077w, 1496s, 1413m, 1270m, 995m, 886m, 806s, 574w, 467m. ¹H-NMR (300 MHz, CDCl₃/CS₂ 1:2): 6.91 (s, 2 H). ¹³C-NMR (75 MHz, CDCl₃/CS₂ 1:2): 136.15; 126.55; 114.77; 111.12. EI-MS: 482 (100, M^+), 401 (15, $[M - Br]^+$), 322 (45, $[M - 2 Br]^+$), 241 (20, $[M - 3 Br]^+$), 162 (40, $[M - 4 Br]^+$). HR-MS: 481.6290 (C₈H₂⁷⁹Br₂⁸¹Br₂S₂⁺; calc. 481.6290). Anal. calc. for C₈H₂Br₄S₂: C 19.94, H 0.42, Br 66.33, S 13.31; found: C 19.93, H 0.44, Br 66.10, S 13.53.

Brominated 2,2'-Bithiophene-5,5'-dicarbaldehydes 4a-c: General Procedure. To a soln. of 3e-g (5 mmol) in abs. Et₂O (150 ml) were added dropwise 2.5M BuLi in hexane (4.4 ml, 11 mmol) within 30 min at -78° . After stirring for 1 h at -78° , DMF (11 mmol, 0.9 ml) was added in one portion. After stirring for an additional 2 h at -78° , the mixture was allowed to warm to r.t. overnight, then hydrolyzed with 5N HCl with ice cooling, and diluted with CHCl₃. The aq. phase was extracted with CHCl₁ and the combined org. phase washed with H₂O, dried (MgSO₄), and evaporated, and the remaining solid recrystallized from benzene.

3,3'-Dibromo-2,2'-bithiophene-5,5'-dicarbaldehyde (**4a**): 1.36 g (71.6%). M.p. 234–235°. UV/VIS (CH₂Cl₂): 256 (4.03), 325 (4.05), 350 (sh, 4.02), 368 (sh, 3.93), 389 (sh, 3.68). IR (KBr): 3077*m*, 2839*m*, 1654*s*, 1508*m*, 1362*s*, 1292*m*, 1215*s*, 1124*m*, 1115*s*, 869*w*, 812*m*, 715*w*, 669*m*, 598*w*, 479*w*. ¹H-NMR (300 MHz, CDCl₃/CS₂ 1:2): 9.90 (*s*, 2 H); 7.71 (*s*, 2 H). ¹³C-NMR (75 MHz, CDCl₃/CS₂ 1:2): 180.07; 140.00; 137.76; 136.09; 113.79. EI-MS: 380 (100, M^+), 351 (10, $[M - CHO]^+$), 270 (30, $[M - CHO - Br]^+$), 241 (10, $[M - 2 CHO - Br]^+$), 162 (40, $[M - 2 CHO - 2 Br]^+$). HR-MS: 377.8018 (C₁₀H₄⁷⁹Br₂S₂O₂⁺; calc. 377.8019). Anal. calc. for C₁₀H₄Br₂S₂O₂: C 31.76, H 1.06, Br 41.78, S 16.93; found: C 31.51, H 1.20, Br 41.62, S 17.16.

4,4'-Dibromo-2,2'-bithiophene-5,5'-dicarbaldehyde (**4b**) [26]: 1.31 g (68.9%). M.p. 252–254°. UV/VIS (CH₂Cl₂): 242 (sh, 4.00), 285 (3.96), 313 (3.92), 356 (sh, 4.33), 370 (4.38), 386 (sh, 4.25). IR (KBr): 3079w, 2844w, 1654s, 1492m, 1433s, 1367w, 1281w, 1204s, 1159m, 920m, 848m, 686w, 660w, 599w, 477w. ¹H-NMR (300 MHz, CDCl₃/CS₂ 1:2): 9.97 (s, 2 H); 7.36 (s, 2 H). ¹³H-NMR (63 MHz, CDCl₃/CS₂ 1:2): 181.70; 142.96; 137.71; 129.98; 120.59. EI-MS: 380 (100, M^+), 351 (10, $[M - CHO]^+$), 299 (20, $[M - Br]^+$), 270 (20, $[M - CHO - Br]^+$), 241 (20, $[M - 2 CHO - Br]^+$), 162 (20, $[M - 2 CHO - 2 Br]^+$). HR-MS: 377.8018 (C₁₀H₄⁷⁹Br₂S₂O₂; calc. 377.8019). Anal. calc. for C₁₀H₄Br₂O₂S₂: C 31.76, H 1.06, Br 41.78, S 16.93; found: C 31.64, H 1.06, Br 41.96, S 16.89.

3,3',4,4'-Tetrabromo-2,2'-bithiophene-5,5'-dicarbaldehyde (4c) [21]: 1.76 g (65.4%). M.p. 266–267°. UV/VIS (CH₂Cl₂): 242 (sh, 3.89), 387 (sh, 4.03), 322 (4.14), 374 (sh, 3.83), 395 (sh, 3.56). IR (KBr): 2865w, 1659s, 1481w, 1458w, 1382w, 1351m, 1298w, 1276w, 1200s, 813w, 768w, 676m, 653w. ¹H-NMR (300 MHz, CDCl₃/CS₂ 1:2): 10.02 (s, 2 H). ¹³C-NMR (75 MHz, CDCl₃/CS₂ 1:2): 182.07; 138.49; 135.99; 123.84; 118.66. EI-MS: 538 (100, M^+), 480 (20, $[M - 2 \text{ CHO}]^+$), 457 (20, $[M - \text{Br}]^+$), 399 (20, $[M - 2 \text{ CHO} - \text{Br}]^+$), 349 (30, $[M - \text{CHO} - 2 \text{ Br}]^+$), 320 (20, $[M - 2 \text{ CHO} - 2 \text{ Br}]^+$), 268 (20, $[M - \text{CHO} - 3 \text{ Br}]^+$), 239 (20, $[M - 2 \text{ CHO} - 3 \text{ Br}]^+$), 160 (40, $[M - 2 \text{ CHO} - 4 \text{ Br}]^+$). HR-MS: 537.6189 (C₁₀H₂⁷⁹Br₂⁸¹Br₂O₂S⁺₂; calc. 537.6190). Anal. calc. for C₁₀H₂Br₄O₂S₂: C 22.33, H 0.37, Br 59.42, S 11.92; found: C 22.32, H 0.56, Br 59.31, S 12.08.

Polyethynyl-2,2'-bithiophenes 2a-r: General Procedure. Brominated 2,2'-bithiophene 3a-g (0.5 mmol) was dissolved in freshly distilled (i-Pr)₂NH (80 ml). To this clear soln. were added dichlorobis(benzonitrile)palladium(II) (78 mg, 0.2 mmol), PPh₃ (106 mg, 0.4 mmol), and CuI (38 mg, 0.2 mmol). The soln. was degassed by passing a rapid stream of Ar through it. An excess of the corresponding acetylene (2 equiv. of phenylacetylene or (trimethylsilyl)acetylene per Br-atom) was then added at r.t. After stirring for 30 min, the soln. was heated at 70° for 4 h. During this time, the soln. rapidly turned bright yellow, then yellow brown, and finally dark brown, with the formation of a heavy precipitate. The soln. was allowed to cool to r.t. and was then filtered. The filtrate was evaporated and the residue chromatographed (silica gel column).

3,3'-Bis[(trimethylsilyl)ethynyl]-2,2'-bithiophene (2a): CC (petroleum ether 40–60)) and recrystallization from MeOH gave pure 2a: 150 mg (83.8%). Colorless needles. M.p. 74–75°. IR (KBr): 3087w, 2954m, 2148m, 1494w, 1361w, 1252m, 1239m, 1082w, 950s, 886s, 843s, 824s, 755s, 712s, 636s, 435m. ¹H-NMR (300 MHz, CDCl₃): 7.16 ($d_{1}^{3}J = 5.2, 2$ H); 7.05 ($d_{1}^{3}J = 5.2, 2$ H); 0.26 (s_{1} 18 H). ¹³C-NMR (75 MHz, CDCl₃): 139.02; 130.67; 123.82; 119.39; 101.56; 100.78; -0.13. EI-MS: 358 (30, M⁺), 343 (25, [M - Me]⁺), 328 (10, [M - 2 Me]⁺), 285 (10,

 $[M - \text{SiMe}_3]^+$); 97 (10, C₂SiMe₃⁺), 73 (100, SiMe₃⁺). HR-MS: 358.0700 (C₁₈H₂₂S₂Si₂⁺; calc. 358.0702). Anal. calc. for C₁₈H₂₂S₂Si₂: C 60.32, H 6.19, S 17.86; found: C 60.36, H 6.30, S 18.00.

4,4'-Bis[(trimethyl)ethynylsilyl]-2,2'-bithiophene (2b): CC (petroleum ether (40–60)) and recrystallization from MeCN gave pure 2b. 132 mg (73.7%). Light-yellow crystals. M.p. 123–124°. UV/VIS (CH₂Cl₂): 239 (sh, 4.61), 247 (4.75), 257 (sh, 4.47), 318 (3.97). IR (KBr): 3102m, 3062w, 2958m, 2898w, 2156s, 1521m, 1481w, 1407w, 1326m, 1255s, 1245s, 1185m, 1153w, 978s, 867s, 848s, 827s, 758s, 739s, 702s, 631m, 617s, 478w, 422w. ¹H-NMR (300 MHz, CDCl₃): 7.35 (d, ⁴J = 1.2, 2 H); 7.17 (d, ⁴J = 1.2, 2 H); 0.25 (s, 18 H). ¹³C-NMR (63 MHz, CDCl₃): 136.12; 128.78; 126.78; 123.06; 99.38; 94.28; -0.09. EI-MS: 358 (100, M^+), 343 (85, $[M - Me]^+$), 313 (5, $[M - 3 Me]^+$), 164 (30, $[M - 2 C_2SiMe_3]^+$). HR-MS: 358.0703 (C₁₈H₂₂S₂Si⁺₂; calc. 358.0702). Anal. calc. for C₁₈H₂₂S₂Si⁻₂: C 60.32, H 6.19, S 17.86; found: C 60.12, H 6.14, S 17.60.

5,5'-Bis[(trimethylsilyl)ethynyl]-2,2'-bithiophene (2c): CC (petroleum ether (40–60)) and recrystallization from MeCN gave pure 2c: 166 mg (92.7%). Light-yellow flakes. M.p. 172°. UV/VIS (CH₂Cl₂): 261 (3.72), 357 (sh, 4.39), 371 (4.42), 387 (sh, 4.27). IR (KBr): 3089w, 3078w, 2957w, 2898w, 2143s, 1503w, 1255m, 1245m, 1162w, 1155w, 1054w, 841s, 797s, 757m, 637m. ¹H-NMR (300 MHz, CDCl₃): 7.11 (d, ${}^{3}J = 3.9, 2$ H); 6.99 (d, ${}^{3}J = 3.9, 2$ H); 0.27 (s, 18 H). ¹³C-NMR (75 MHz, CDCl₃): 137.84; 133.35; 123.66; 122.45; 100.45; 97.15; -0.07. EI-MS: 358 (30, M^+), 343 (70, $[M - Me]^+$), 313 (5, $[M - 3 Me]^+$), 164 (25, $[M - 2 C_2SiMe_3]^+$). HR-MS: 358.0703 (C₁₈H₂₂S₂Si₂; calc. 358.0702). Anal. calc. for C₁₈H₂₂S₂Si₂: C 60.32, H 6.19, S 17.86; found: C 60.01, H 6.14, S 17.8.

3,3',4,4'-Tetrakis[(trimethylsilyl)ethynyl]-2,2'-bithiophene (2d): CC (hexane) and recrystallization from MeOH gave pure 2d: 123 mg (54.7%). Light-yellow crystals. M.p. 169–171° (dec.). UV/VIS (CH₂Cl₂): 253 (4.64), 259 (sh, 4.63), 308 (sh, 3.96), 321 (4.05), 336 (4.10), 360 (4.17), 375 (4.09). IR (KBr): 3111w, 2959m, 2898w, 2163m, 2150m, 1501w, 1405w, 1341w, 1248s, 1134w, 893s, 875s, 843s, 756s, 700m, 642m. ¹H-NMR (300 MHz, CDCl₃): 7.37 (s, 2 H); 0.28 (s, 18 H); 0.26 (s, 18 H). ¹³C-NMR (75 MHz, CDCl₃): 137.72; 127.73; 125.08; 121.91; 105.21; 98.75; 98.16; 96.86; 0.11; -0.25. EI-MS: 550 (20, M^+), 535 (5, $[M - Me]^+$), 477 (5, $[M - SiMe_3 - Me]^+$), 447 (5, $[M - SiMe_3 - 2 Me]^+$), 73 (100, SiMe₃⁺). HR-MS: 550.1491 (C₂₈H₃₈S₂Si₄⁺; calc. 550.1492). Anal. calc. for C₂₈H₃₈S₂Si₄: C 61.08, H 6.96, S 11.62; found: C 60.72, H 6.87, S 11.62.

3,3',5,5'-Tetrakisf (trimethylsilyl)ethynyl]-2,2'-bithiophene (2e): CC (petroleum ether (40–60)/CHCl₃5:1) and recrystallization from MeCN or pentane gave pure 2e: 204 mg (90.7%). Yellow crystals. M.p. 153–154° (dec.). UV/VIS (CH₂Cl₂): 266 (sh, 4.65), 270 (4.66), 379 (4.30), 400 (4.46), 423 (4.40). IR (KBr): 3092w, 2955m, 2146s, 1510m, 1248s, 1139w, 976m, 892m, 845s, 758s, 699w, 642m. ¹H-NMR (300 MHz, CDCl₃): 7.14 (s, 2 H); 0.30 (s, 18 H); 0.24 (s, 18 H). ¹³C-NMR (75 MHz, CDCl₃): 139.14; 134.78; 121.33; 118.23; 103.27; 101.21; 100.05; 96.52; -0.16; -0.52. EI-MS: 550 (50, M⁺), 535 (10, $[M - Me]^+$), 477 (5, $[M - SiMe_3]^+$), 462 (5, $[M - SiMe_3 - Me]^+$), 447 (5, $[M - SiMe_3 - 2 Me]^+$), 73 (100, SiMe₃⁺). HR-MS: 550.1492 (C₂₈H₃₈S₂Si₄⁺; calc. 550.1493). Anal. calc. for C₂₈H₃₈S₂Si₄: C 61.08, H 6.96, S 11.62; found: C 61.08, H 7.04, S 11.30.

4,4',5,5'-Tetrakis[(trimethylsilyl)ethynyl]-2,2'-bithiophene (**21**): CC (petroleum ether (40–60)/CHCl₃ 5:1) and recrystallization from MeCN gave pure **2f**: 193 mg (85.8%). Yellow-orange crystals. M.p. 208–209°. UV/VIS (CH₂Cl₂): 257 (sh, 4.49), 267 (4.66), 294 (4.21), 305 (4.22), 365 (sh, 4.41), 379 (4.47), 393 (sh, 4.35). IR (KBr): 3089w, 2959m, 2898w, 2142s, 1505m, 1414w, 1332w, 1248s, 1199m, 994s, 842s, 759s, 703m, 643w, 623w, 512w. ¹H-NMR (300 MHz, CDCl₃): 7.01 (*s*, 2 H); 0.27 (*s*, 18 H); 0.26 (*s*, 18 H). ¹³C-NMR (75 MHz, CDCl₃): 135.24; 128.13; 126.33; 126.01; 105.42; 99.35; 98.04; 95.85; 0.04; -0.05. EI-MS: 550 (80, *M*⁺), 535 (5, [*M* - Me]⁺), 477 (5, [*M* - SiMe₃]⁺), 73 (100, SiMe₃⁺). HR-MS: 550.1491 (C₂₈H₃₈S₂Si₄⁺; calc. 550.1492). Anal. calc. for C₂₈H₃₈S₂Si₄: C 61.08, H 6.96, S 11.62; found: C 61.03, H 6.99, S 11.22.

3,3',4,4',5,5'-Hexakis[(trimethylsilyl)ethynyl]-2,2'-bithiophene (**2g**): CC (petroleum ether (40–60)/CHCl₃ 5:1) and recrystallization from MeCN gave pure **2g**: 271 mg (73.0%). Orange crystals. M.p. 237–241° (dec.). UV/VIS (CH₂Cl₂): 265 (4.61), 276 (4.72), 295 (4.67), 385 (sh, 4.28), 405 (4.47), 431 (4.45). IR (KBr): 2960s, 2899m, 2146s, 1487m, 1407m, 1366w, 1249s, 1084m, 934s, 846s, 759s, 745m, 699m, 647s, 632m, 578w. ¹H-NMR (300 MHz, CDCl₃): 0.31 (s, 18 H); 0.27 (s, 36 H, overlapped). ¹³C-NMR (75 MHz, CDCl₃): 136.75; 129.55; 124.75; 121.40; 106.64; 105.61; 101.61; 98.69; 97.14; 95.72; 0.09; -0.12; -0.45. EI-MS: 742 (55, M^+), 727 (5, $[M - Me]^+$), 669 (5, $[M - SiMe_3]^+$), 371 (5, $\frac{1}{2} M^+$), 73 (100, SiMe $_3^+$). HR-MS: 742.2283 (C₃₈H₅₄S₂Si₆⁺; calc. 742.2283). Anal. calc. for C₃₈H₅₄S₂Si₆; C 61.43, H 7.33, S 8.62; found: C 61.45, H 7.15, S 8.64.

3,3'-Bis(phenylethynyl)-2,2'-bithiophene (**2h**): CC (petroleum ether (40–60)/CHCl₃ 5:1) and recrystallization from petroleum ether (40–60)/CHCl₃ 9:1 or benzene gave pure **2h**: 165 mg (90.2%). Yellow cubes. M.p. 162–164°. UV/VIS (CH₂Cl₂): 251 (4.42), 266 (4.44), 285 (sh, 4.36), 339 (4.29). IR (KBr): 3105w, 3076w, 3038w, 2199w, 1594w, 1506m, 1486m, 1439m, 1363w, 1160w, 1070w, 1029w, 942w, 913w, 876w, 828m, 759m, 753s, 711s, 690s, 632s, 549w, 537w, 521w, 477w. ¹H-NMR (250 MHz, CDCl₃): 7.60–7.56 (m, 4 H); 7.37–7.33 (m, 6 H); 7.24 (d, ³J = 5.3, 2 H); 7.16 (d, ³J = 5.3, 2 H). ¹³C-NMR (63 MHz, CDCl₃): 138.27; 131.40; 130.40; 128.43; 124.25; 123.42; 119.34; 95.47;

85.84. EI-MS: 366 (100, M^+), 183 (20, ½ M^+). HR-MS: 366.0535 ($C_{24}H_{14}S_2^+$; calc. 366.0537). Anal. calc. for $C_{24}H_{14}S_2$: C 78.68, H 3.85, S 17.47; found: C 78.70, H 3.97, S 17.33.

4,4'-Bis(phenylethynyl)-2,2'-bithiophene (**2i**): CC (petroleum ether (40–60)/CHCl₃ 5:1) and recrystallization from petroleum ether (40–60)/CHCl₃ 1:1 or benzene gave pure **2i**: 147 mg (80.3 %). Yellow crystals. M.p. 171–172°. UV/VIS (CH₂Cl₂): 283 (4.88), 297 (sh, 4.76), 325 (sh, 4.11). IR (KBr): 3110m, 3054m, 2215w, 1593m, 1528m, 1485m, 1442m, 1344m, 1182m, 1071m, 1026m, 972m, 921m, 864m, 841s, 829s, 758s, 693s, 618s, 552m, 530s, 462w. ¹H-NMR (300 MHz, CDCl₃/CS₂ 1:2): 7.45–7.39 (m, 4 H); 7.32 (d, ⁴J = 1.3, 2 H); 7.30–7.25 (m, 6 H); 7.18 (d, ⁴J = 1.3, 2 H). ¹³C-NMR (75 MHz, CDCl₃/CS₂ 1:2): 136.07; 131.26; 128.02; 127.94; 127.56; 126.35; 123.10; 122.84; 89.48; 84.47. EI-MS: 366 (100, M^+), 182 (20, $\frac{1}{2}M^+$). HR-MS: 366.0538 (C₂₄H₁₄S⁺₂; calc. 366.0537). Anal. calc. for C₂₄H₁₄S²₂: C 78.68, H 3.85, S 17.47; found: C 79.06, H 3.81, S 17.13.

5,5'-Bis(phenylethynyl)-2,2'-bithiophene (**2k**): CC (petroleum ether (40–60)/CHCl₃ 5:1) and recrystallization from benzene gave pure **2k**: 175 mg (95.6 %). Yellow crystals. M.p. 173–175°. UV/VIS (CH₂Cl₂): 385 (4.70). IR (KBr): 3047w, 2195w, 1597w, 1514m, 1483w, 1441m, 1070w, 1046w, 1024w, 912w, 876w, 804s, 756s, 691s, 499m. ¹H-NMR (250 MHz, CDCl₃, T = 323 K): 7.53–7.46 (m, 4 H); 7.36–7.26 (m, 6 H); 7.15 (d, ³J = 4.0, 2 H); 7.32 (d, ³J = 4.0, 2 H). ¹³C-NMR (63 MHz, CDCl₃, T = 323 K): 138.15; 132.79; 131.46; 128.55; 128.41; 124.02; 122.90; 122.85; 94.63; 82.57. EI-MS: 366 (100, M^+), 183 (35, $\frac{1}{2}M^+$). HR-MS: 366.0535 (C₂₄H₁₄S⁺₂; calc. 366.0537). Anal. calc. for C₂₄H₁₄S₂: C 78.68, H 3.85, S 17.47; found: C 78.39, H 3.90, S 17.71.

3,3',4,4'-Tetrakis(phenylethynyl)-2,2'-bithiophene (21): CC (petroleum ether (40–60)/CHCl₃ 5:1) and recrystallization from benzene gave pure 21: 220 mg (77.7%). Yellow needles. M.p. 182–183°. UV/VIS (CH₂Cl₂): 290 (4.86), 307 (4.77), 377 (4.36). IR (KBr): 3094w, 2207w, 1594w, 1507w, 1495m, 1477m, 1440m, 1070w, 1029w, 915w, 753s, 689s, 680m, 551w, 532w, 508w. ¹H-NMR (300 MHz, CDCl₃): 7.64–7.61 (m, 4 H); 7.59–7.54 (m, 4 H); 7.49 (s, 2 H); 7.39–7.32 (m, 12 H). ¹³C-NMR (63 MHz, CDCl₃): 137.25; 131.67; 131.46; 128.69; 128.49; 128.40; 127.16; 125.14; 123.23; 123.11; 121.70; 99.28; 91.93; 84.68; 83.50. EI-MS: 566 (100, M^+). HR-MS: 566.1163 (C₄₀H₂₂S⁺; calc. 566.1163). Anal. calc. for C₄₀H₂₂S₂: C 84.78, H 3.92, S 11.30; found: C 85.12, H 3.92, S 10.96.

3,3',5,5'-*Tetrakis(phenylethynyl)-2,2'-bithiophene* (**2m**): CC (petroleum ether (40–60)/CHCl₃ 1:1) and recrystallization from benzene gave pure **2m**: 264 mg (93.3 %). Orange needles. M.p. 239–241°. UV/VIS (CH₂Cl₂): 242 (4.58), 310 (4.76), 321 (4.75), 425 (4.38), 447 (sh, 4.33). IR (KBr): 3051w, 2201w, 1596m, 1522m, 1481m, 1441m, 1068w, 1021w, 913w, 828m, 755s, 691s. ¹H-NMR (300 MHz, CDCl₃): 7.65–7.61 (*m*, 4 H); 7.54–7.50 (*m*, 4 H); 7.42–7.34 (*m*, 12 H); 7.32 (*s*, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 137.98; 134.54; 131.18; 128.42; 128.41; 128.18; 128.11; 128.09; 122.63; 122.23; 121.68; 119.5; 96.15; 95.00; 84.93; 81.75. EI-MS: 566 (100, M^+), 283 (20, $\frac{1}{2} M^+$). HR-MS: 566.1163 (C₄₀H₂₂S⁺₂; calc. 566.1163). Anal. calc. for C₄₀H₂₂S₂: C 84.78, H 3.92, S 11.30; found: C 85.03, H 3.67, S 11.30.

4,4',5,5'-Tetrakis(phenylethynyl)-2,2'-hithiophene (**2n**): CC (petroleum ether (40–60)/CHCl₃ 1:1) and recrystallization from benzene gave pure **2n**: 244 mg (86.2%). Orange crystals. M.p. 256–257° (dec.). UV/VIS (CH₂Cl₂): 238 (4.54), 292 (sh, 4.65), 306 (4.76), 404 (4.59). IR (KBr): 3077w, 3054w, 3031w, 2207w, 2192w, 1592m, 1521m, 1491m, 1441m, 1069w, 1024w, 915w, 816m, 752s, 690s, 678m, 524w, 499m. ¹H-NMR (300 MHz, CDCl₃/CS₂ 1:2): 7.52–7.49 (m, 8 H); 7.34–7.31 (m, 12 H); 7.12 (s, 2 H). ¹³C-NMR (75 MHz, CDCl₃/CS₂ 1:2): 135.77; 131.64; 131.46; 128.70; 128.40; 128.35; 128.26; 127.55; 126.25; 125.66; 122.98; 122.73; 99.54; 94.19; 84.00; 82.44. EI-MS: 566 (100, M^+), 283 (25, ¹/₂ M^+). HR-MS: 566.1163 (C₄₀H₂₂S₂; calc. 566.1163). Anal. calc. for C₄₀H₂₂S₂: C 84.78, H 3.92, S 11.30; found: C 85.13, H 3.91, S 10.96.

3,3',4,4',5,5'-Hexakis(phenylethynyl)-2,2'-bithiophene (20): To achieve complete conversion, 3f was treated with a large excess of phenylacetylene (15 mmol) for 24 h. Without preceding filtration, the mixture was purified by CC (CHCl₃). Recrystallization from chlorobenzene gave 2o: 288 mg (75.2%). Orange needles. M.p. 298° (dec.). UV/VIS (CH₂Cl₂): 245 (sh, 4.46), 290 (sh, 4.43), 327 (4.59), 438 (4.20), 456 (4.18). IR (KBr): 3069w, 3050w, 3034w, 2202w, 2192w, 1597m, 1516w, 1495m, 1441m, 1068w, 910m, 751s, 687s. ¹H-NMR (250 MHz, CS₂/(D₆)aceton 3:1): 7.64–7.59 (m, 6 H); 7.53–7.47 (m, 6 H); 7.41–7.31 (m, 18 H). EI-MS: 766 (100, M^+). HR-MS: 766.1791 (C₅₆H₃₀S⁺; calc. 766.1788). Anal. calc. for C₅₆H₃₀S₂: C 87.70, H 3.94, S 8.36; found: C 87.73, H 3.92, S 8.35.

4-Bromo-3,3',4',5,5'-pentakis(phenylethynyl)-2,2'-bithiophene (2p): Pure 2p was obtained as a by-product in the synthesis of 20 (yield: 45.5%) from 3f after a reaction time of 4 h. Workup as described for 20 and recrystallization from benzene gave 2p: 101 mg (27.2%). Orange needles. M.p. 225–227°. UV/VIS (CH₂Cl₂): 243 (sh, 4.70), 317 (4.81), 328 (4.81), 350 (4.49), 437 (4.47), 455 (sh, 4.43). IR (KBr): 3049w, 2202w, 1598w, 1514w, 1497w, 1440w, 1069w, 1022w, 752s, 684s, 669m. ¹H-NMR (300 MHz, CS₂/(D₆)aceton 3:1): 7.72–7.65 (m, 4 H); 7.61–7.54 (m, 6 H); 7.48–7.37 (m, 15 H). ¹³C-NMR (75 MHz, CS₂/(D₆)aceton 3:1): 138.10; 136.98; 132.03; 132.73; 130.53; 130.43; 123.63; 123.57; 123.42; 122.72; 122.56; 121.68; 121.10; 105.29; 102.27; 102.12; 101.70; 100.94; 98.26; 85.88; 84.68; 83.38; 82.75. EI-MS: 746 (100, M^+), 666 (10, $[M - BI]^+$). HR-MS: 744.0578

 $(C_{48}H_{25}^{79}BrS_2^+; calc. 744.0581)$. Anal. calc. for $C_{48}H_{25}BrS_2$: C 77.41, H 3.39, Br 10.61; S 8.59; found: C 77.14, H 3.42, Br 10.65, S 8.79.

3,3',4,4'-Tetrabromo-5,5'-bis(phenylethynyl)-2,2'-bithiophene (**2r**): Pure **2r** was obtained under the same conditions as described for **20**, but after 4 h at r.t. CC (CHCl₃) and recrystallization from benzene gave **2r**: 276 mg (80.9%). Yellow needles. M.p. 229–230°. UV/VIS (CH₂Cl₂): 273 (4.27), 321 (sh, 4.34), 345 (4.46). IR (KBr): 3052w, 2200w, 1508m, 1440w, 1298m, 1253w, 905m, 748s, 721w, 682s, 516m. ¹H-NMR (250 MHz, CS₂/(D₆)aceton 3:1): 7.53–7.47 (m, 4 H); 7.40–7.32 (m, 6 H). ¹³C-NMR (63 MHz, CS₂/(D₆)aceton 3:1): 132.29; 130.06; 129.67; 129.21; 123.80; 122.44; 120.93; 117.30; 100.95; 81.53. EI-MS: 682 (100, M^+), 601 (30, $[M - Br]^+$), 522 (20, $[M - 2 Br]^+$), 441 (5, $[M - 3 Br]^+$), 362 (10, $[M - 4 Br]^+$), 341 (15, $\frac{1}{2} M^+$). HR-MS: 681.6917 (C₂₄H₁₀⁷⁹Br₂⁸¹Br₂S²; calc. 681.6917). Anal. calc. for C₂₄H₁₀Br₄S₂: C 42.26, H 1.48, Br 46.86, S 9.40; found: C 42.41, H 1.30, Br 46.90, S 9.39.

Polyethynyl-2,2'-bithiophene-5,5'-dicarbaldehydes 1a-f: General Procedure. 2,2'-Bithiophene-5,5'-dicarbaldehyde 4a-c (0.5 mmol) was dissolved in abs. benzene/freshly distilled (i-Pr)₂NH 3:1 (ν/ν ; 150 ml) at 70°. To this clear soln. was added dichlorobis(benzonitrile)palladium(II) (78 mg, 0.2 mmol), PPh₃ (106 mg, 0.4 mmol), and CuI (38 mg, 0.2 mmol). The soln. was degassed by passing a rapid stream of Ar through it. An excess of the corresponding acetylene (2 equiv. of phenylacetylene or (trimethylsilyl)acetylene per Br-atom) was added, and the soln. was then stirred at 70° for 4 h. During this time, the soln. rapidly turned bright yellow, then yellow brown, and finally dark brown, with the formation of a heavy precipitate. The mixture was allowed to cool to r.t. and evaporated. The yellow brown precipitate was chromatographed (silica-gel column).

3.3'-Bis[(trimethylsilyl)ethynyl]-2,2'-bithiophene-5,5'-dicarbaldehyde (1a): CC (petroleum ether (40–60)/ CHCl₃ 1:1) and recrystallization from petroleum ether (40–60)/CHCl₃ 9:1 gave pure 1a: 169 mg (81.6%). Yellow needles. M.p. 203–205°. UV/VIS (CH₂Cl₂): 268 (sh, 4.59), 273 (4.61), 318 (sh, 3.78), 331 (3.88), 346 (3.86), 384 (sh, 4.15), 402 (4.33), 426 (4.25). IR (KBr): 3090w, 2960w, 2817w, 2152w, 1679s, 1402w, 1361w, 1246m, 1231m, 1142m, 975w, 892w, 857m, 746w, 675w. ¹H-NMR (300 MHz, CDCl₃): 9.89 (s, 2 H): 7.74 (s, 2 H); 0.32 (s, 18 H). ¹³C-NMR (75 MHz, CDCl₃): 182.40; 144.73; 141.27; 138.69; 122.04; 106.47; 98.84; -0.53. EI-MS: 414 (20, M^+), 399 (10, $[M - Me]^+$), 341 (5, $[M - SiMe_3]^+$), 73 (100, SiMe₃⁺). HR-MS: 414.0600 (C₂₀H₂₂O₂S₂Si₂⁺; calc. 414.0600). Anal. calc. for C₂₀H₂₂O₂S₂Si₂: C 57.96, H 5.35, S 15.45; found: C 57.46, H 5.35, S 15.26.

4,4'-Bis[(trimethylsilyl)ethynyl]-2,2'-bithiophene-5,5'-dicarbaldehyde (1b): CC (petroleum ether (40–60)/ CHCl₃ 1:1) and recrystallization from benzene gave pure **33**: 101 mg (48.9%). Yellow needles. M.p. 225–226°. · UV/VIS (CH₂Cl₂): 262 (sh, 4.37), 270 (4.42), 303 (sh, 4.12), 313 (4.26), 330 (4.17), 364 (sh, 4.26), 377 (4.33), 391 (sh, 4.24). IR (KBr): 3067w, 2961w, 2844w, 2153w, 1670s, 1427m, 1253w, 1230w, 1213m, 1203m, 1031w, 867m, 847m, 764w, 703w, 668w. ¹H-NMR (300 MHz, CDCl₃): 10.09 (s, 2 H); 7.36 (s, 2 H); 0.29 (s, 18 H). ¹³C-NMR (75 MHz, CDCl₃): 182.47; 144.19; 142.33; 131.27; 129.58; 103.54; 95.46; --0.25. EI-MS: 414 (100, M^+), 399 (80, $[M - Me]^+$), 341 (15, $[M - SiMe_3]^+$), 73 (70, SiMe₃⁺). HR-MS: 414.0601 (C₂₀H₂₂O₂S₂Si₂; calc. 414.0600). Anal. calc. for C₂₀H₂₂O₂S₂Si₂: C 57.96, H 5.35, S 15.45; found: C 57.81, H 5.45, S 15.16.

3,3',4,4'-Tetrakis[(trimethylsilyl)ethynyl]-2,2'-bithiophene-5,5'-dicarbaldehyde (1c): CC (petroleum ether (40–60)/CHCl₃ 5:1) and recrystallization from pentane gave pure 1c: 225 mg (74.3%). Yellow needles. M.p. 235–237° (dec.). UV/VIS (CH₂Cl₂): 285 (4.71), 293 (4.70), 368 (sh, 4.07), 386 (4.21), 407 (4.34), 433 (4.34). IR (KBr): 2962s, 2900s, 2841m, 2147w, 1666s, 1404w, 1375m, 1347s, 1249s, 1234s, 927s, 847s, 763m. ¹H-NMR (300 MHz, CDCl₃): 10.14 (s, 2 H); 0.35 (s, 18 H); 0.30 (s, 18 H). ¹³C-NMR (75 MHz, CDCl₃): 182.89; 142.85; 141.81; 132.71; 125.08; 110.34; 105.83; 97.38; 94.75; -0.12; -0.46. EI-MS: 606 (20, M^+), 591 (5, [$M - Mel^+$), 533 (10, [$M - SiMe_3$]⁺), 460 (5, [$M - 2 SiMe_3$]⁺), 431 (5, [$M - SiMe_3 - CHO$]⁺), 73 (100, SiMe₃⁺). HR-MS: 606.1390) (C₃₀H₃₈O₂S₂Si₄⁺; calc. 606.1390). Anal. calc. for C₃₀H₃₈O₂S₂Si₄: C 59.39, H 6.32, S 10.55; found: C 59.49, H 6.40, S 10.27.

3,3'-Bis(phenylethynyl)-2,2'-bithiophene-5,5'-dicarbaldehyde (1d): CC (CHCl₃) and recrystallization from petroleum ether (40–60)/CHCl₃ 1:1 gave pure 1d: 190 mg (90.0%). Yellow needles. M.p. 235–236°. UV/VIS (CH₂Cl₂): 295 (sh, 4.74), 300 (4.75), 423 (4.24), 440 (sh, 4.18). IR (KBr): 3079w, 3056w, 2829w, 2202w, 1660s, 1520w, 1492m, 1441w, 1414w, 1349w, 1238w, 1205s, 1129s, 857m, 761s, 691.m, 669w, 643w, 543w, 522w. ¹H-NMR (250 MHz, CDCl₃): 9.95 (s, 2 H); 7.85 (s, 2 H); 7.67–7.59 (m, 4 H); 7.44–7.39 (m, 6 H). ¹³C-NMR (63 MHz, CDCl₃): 182.65; 143.85; 141.73; 138.88; 135.40; 131.54; 129.39; 128.74; 122.21; 98.89; 84.17. EI-MS: 422 (100, M^+), 393 (15, $[M - CHO]^+$), 364 (20, $[M - 2 CHO]^+$). HR-MS: 422.0437' (C₂₆H₁₄O₂S₂; calc. 422.0435). Anal. calc. for C₂₆H₁₄O₂S₂: C 73.93, H 3.34, S 15.15; found: C 73.90, H 3.37, S 14.89.

4,4'-Bis(phenylethynyl)-2,2'-bithiophene-5,5'-dicarbaldehyde (1e): CC (CHCl₃) and recrystallization from chlorobenzene gave pure 1e: 88 mg (41.7%). Yellow-orange needles. M.p. 217–218°. UV/VIS (CH₂Cl₂): 272 (sh, 4.44), 287 (4.51), 298 (4.55), 333 (4.50), 344 (sh, 4.48), 374 (sh, 4.40), 396 (sh, 4.21). IR (KBr): 3082w, 3052w, 2835w, 2208w, 1657s, 1521w, 1484w, 1431m, 1349m, 1211s, 864m, 759m, 691m. ¹H-NMR (300 MHz, CDCl₃): 10.21 (s, 2 H); 7.60–7.55 (m, 4 H); 7.46 (s, 2 H); 7.44–7.25 (m, 6 H). ¹³C-NMR (75 MHz, CDCl₃): 182.35; 143.23; 142.57;

131.80; 131.34; 129.56; 129.40; 128.57; 121.48; 96.78; 80.84. EI-MS: 422 (100, M^+), 393 (10, $[M - CHO]^+$), 364 (10, $[M - 2 CHO]^+$). HR-MS: 422.0437 ($C_{26}H_{14}O_2S_2^+$; calc. 422.0435). Anal. calc. for $C_{26}H_{14}O_2S_2$: C 73.93, H 3.34, S 15.15; found: C 73.45, H 3.40, S 14.81.

3,3',4,4'-Tetrakis(phenylethynyl)-2,2'-bithiophene-5,5'-dicarbaldehyde (1f): CC (CHCl₃) and recrystallization from benzene gave pure 1f: 185 mg (59.5%). Yellow needles. M.p. 295° (dec.). UV/VIS (CH₂Cl₂): 256 (4.59), 322 (4.84), 432 (4.23), 455 (sh, 4.19). IR (KBr): 3046w, 2821w, 2200m, 1662s, 1495w, 1384m, 1347m, 1280w, 1213m, 1203m, 756m, 686m. ¹H-NMR (300 MHz, CDCl₃): 10.30 (s, 2 H); 7.71–7.67 (m, 4 H); 7.64–7.60 (m, 4 H); 7.47–7.41 (m, 12 H). EI-MS: 622 (100, M^+), 593 (10, $[M - CHO]^+$), 564 (10, $[M - 2 \ CHO]^+$). HR-MS: 622.1063 (C₄₂H₂₂O₂S⁺₂; calc. 622.1061). Anal. calc. for C₄₂H₂₂O₂S₂: C 81.02, H 3.56, S 10.28; found: C 80.69, H 3.41, S 9.92.

Polyethynyl-2,2'-bithiophenes **5a-e**: General Procedure for the Removal of SiMe₃ Protecting Groups. To a suspension of poly[(trimethylsily])ethynyl]-2,2'-bithiophene **2a-c**, e, f (0.2 mmol) in deoxygenated MeOH (50 ml) was added sat. K₂CO₃ soln. (0.5 ml) at r.t. The mixture was stirred for 4 h (\rightarrow soln.). The soln. was diluted with CH₂Cl₂, washed several times with H₂O, dried (MgSO₄), and evaporated: pure product.

3,3'-Diethynyl-2,2'-bithiophene (**5a**): Recrystallization from MeOH: 41 mg (95.8%). Colorless needles. M.p. 94–97° (dec.). IR (KBr): 3261s, 3100w, 2091w, 1086w, 930w, 882m, 819m, 718s, 678s, 615s. ¹H-NMR (300 MHz, CDCl₃): 7.23 (d, ³J = 5.3, 2 H); 7.12 (d, ³J = 5.3, 2 H); 3.36 (s, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 138.31; 130.86 (¹J = 172.1, ²J = 4.0); 124.41 (¹J = 188.4, ²J = 6.3); 118.68; 82.85 (¹J = 253.5); 79.05. EI-MS: 214 (100, M^+). HR-MS: 213.9911 (C₁₂H₆S₂⁺; calc. 213.9911). Anal. calc. for C₁₂H₆S₂: C 67.29, H 2.83, S 29.88; found: C 67.05, H 2.83, S 30.12.

4,4'-Diethynyl-2,2'-bithiophene (**5b**): Recrystallization from MeOH: 40 mg (93.5%). Light-yellow needles. M.p. 119–120°. UV/VIS (CH₂Cl₂): 235 (4.53), 250 (sh, 4.20), 312 (4.00). IR (KBr): 3280s, 3104w, 3052w, 2110w, 1517w, 1403w, 1326w, 1185w, 1136w, 964w, 863m, 832w, 819s, 747m, 700m, 676m, 624w, 596s, 510w, 476w. ¹H-NMR (300 MHz, CDCl₃): 7.39 (d, ⁴J = 1.2, 2 H); 7.18 (d, ⁴J = 1.2, 2 H); 3.05 (s, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 135.99; 129.14; 126.58; 121.68; 78.21; 77.14. EI-MS: 214 (100, M^+). HR-MS: 213.9911 (C₁₂H₆S⁺₂; calc. 213.9911). Anal. calc. for C₁₂H₆S₂: C 67.29, H 2.83, S 29.88; found: C 67.29, H 3.06, S 29.65.

5,5'-Diethynyl-2,2'-bithiophene (5c): Recrystallization from MeOH: 41 mg (95.8%). Light-yellow needles. UV/VIS (CH₂Cl₂): 256 (3.80), 345 (sh, 4.38), 354 (4.40), 371 (sh, 4.24). IR (KBr): 3284s, 3089w, 3068w, 2095m, 1436m, 1200m, 1140m, 1051m, 881m, 800s, 694m, 589m, 561m, 515m. ¹H-NMR (300 MHz, CDCl₃): 7.15 (d, ${}^{3}J = 3.9, 2$ H); 7.01 (d, ${}^{3}J = 3.9, 2$ H); 3.41 (s, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 137.85; 133.72; 123.68; 121.23; 82.52; 76.52. EI-MS: 214 (100, M^+). HR-MS: 213.9910 (C₁₂H₆S₂⁺; calc. 213.9911). Anal. calc. for C₁₂H₆S₂: C 67.29, H 2.83, S 29.88; found: C 66.99, H 2.81, S 30.20.

3,3',5,5'-Tetraethynyl-2,2'-bithiophene (5d): Recrystallization from MeOH or benzene: 50 mg (95.4%). Colorless needles. IR (KBr): 3281s, 3099w, 2098w, 1512w, 847s, 664s, 605s, 535m, 449w. ¹H-NMR (300 MHz, CDCl₃): 7.25 (s, 2 H); 3.45 (s, 2 H); 3.42 (s, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 138.79; 136.37; 121.10; 118.64; 84.66; 83.46; 78.35; 75.75. EI-MS: 262 (100, M^+), 131 (5, $\frac{1}{2} M^+$). HR-MS: 261.9910 (C₁₆H₂S⁺₂; calc. 261.9911). Anal. calc. for C₁₆H₆S₂: C 73.28, H 2.31, S 24.41; found: C 73.02, H 2.05, S 24.93.

4,4',5,5'-Tetraethynyl-2,2'-bithiophene (5e): Recrystallization from MeOH: 49 mg (93.5%). Light-yellow needles. IR (KBr): 3279s, 3077w, 3039w, 2108w, 1511m, 1417w, 966m, 830s, 682s, 608s, 507m, 448w. ¹H-NMR (300 MHz, CDCl₃): 7.09 (s, 2 H); 3.67 (s, 2 H); 3.34 (s, 2 H). ¹³C-NMR (75 MHz, CDCl₃): 135.49; 127.13; 126.51; 125.55; 86.86; 81.58; 81.33; 75.05. EI-MS: 262 (100, M^+), 131 (5, $\frac{1}{2} M^+$). HR-MS: 261.9911 (C₁₆H₆S₂⁺; calc. 261.9911). Anal. calc. for C₁₆H₆S₂: C 73.28, H 2.31, S 24.41; found: C 73.17, H 2.29, S 24.54.

REFERENCES

- [1] E. Vogel, Pure Appl. Chem. 1993, 65, 143.
- [2] R. Bonnett, Chem. Soc. Rev. 1995, 19; 'Porphyrin Photosensitization', Eds. D. Kessel and J. Dougherty, Plenum Press, New York, 1983.
- [3] J. R. Sessler, M. J. Cyr, B.G. Maiya, M. L. Judy, J. T. Newmann, H. L. Skiles, R. Boriak, J. L. Matthew, T. C. Chan, Proc. SPIE-Int. Soc. Opt. Eng. 1990, 1203, 233.
- [4] H. van der Bergh, Chem. Brit. 1986, 22, 430; F.Y. Shiau, R.K. Pandey, T.J. Dougherty, K.M. Smith, Proc. SPIE-Int. Soc. Opt. Eng. 1991, 1426, 330.
- [5] P.J. Chmielewski, L. Latos-Grazynski, K. Rachlewicz, K. Glowiak, Angew. Chem. 1994, 106, 805; *ibid. Int. Ed.* 1994, 33, 779; H. Furuta, T. Asano, T. Ogawa, J. Am. Chem. Soc. 1994, 116, 767; P.J. Chmielewski, L. Latos-Grazynski, J. Chem. Soc., Perkin Trans. 2 1995, 503.

- [6] E. Vogel, M. Bröring, J. Fink, D. Rosen, H. Schmickler, J. Lex, K. W.K. Chan, Y.D. Wu, M. Nendel, D. A. Plattner, K. N. Houk, Angew. Chem. 1995, 107, 2705; ibid. Int. Ed. 1995, 34, 2511; M. Bröring, J. Jendry, L. Zander, H. Schmickler, J. Lex, Y.D. Wu, M. Nendel, J. Chen, D.A. Plattner, K. N. Houk, E. Vogel, Angew. Chem. 1995, 107, 2709; ibid. Int. Ed. 1995, 34, 2515; J. L. Sessler, J. S. Weghorn, V. Lynch, M. R. Johnson, Angew. Chem. 1994, 106, 1572; ibid. Int. Ed. 1994, 33, 1509; J. L. Sessler, M.J. Cyr, V. Lynch, J. Am. Chem. Soc. 1990, 112, 2810; J. L. Sessler, Angew. Chem. 1994, 106, 1410; ibid. Int. Ed. 1994, 33, 1348; B. Franck, A. Nonn, Angew. Chem. 1995, 107, 1941; ibid. Int. Ed. 1995, 34, 1795.
- [7] E. Vogel, M. Köcher, H. Schmickler, J. Lex, Angew. Chem. 1986, 98, 262; ibid. Int. Ed. 1986, 25, 257;
 J. L. Sessler, E. A. Bruker, S. J. Weghorn, M. Kisters, M. Schäfer, J. Lex, E. Vogel, Angew. Chem. 1994, 106, 2402; ibid. Int. Ed. 1994, 33, 2308; H.J. Callot, A. Rohrer, T. Tschamber, B. Metz, New J. Chem. 1995, 19, 155.
- [8] E. Vogel, W. Haas, B. Knipp, J. Lex, H. Schmickler, Angew. Chem. 1988, 100, 445; ibid. Int. Ed. 1988, 27, 406;
 W. Haas, B. Knipp, M. Sicken, J. Lex, E. Vogel, Angew. Chem. 1988, 100, 448; ibid. Int. Ed. 1988, 27, 409;
 E. Vogel, P. Röhrig, M. Sicken, B. Knipp, A. Herrmann, M. Pohl, H. Schmickler, J. Lex, Angew. Chem. 1989, 101, 1683; ibid. Int. Ed. 1989, 28, 1651.
- [9] D. O. Martire, N. Jux, P. F. Aramendia, R. M. Negri, J. Lex, S. E. Braslavsky, K. Schaffner, E. Vogel, J. Am. Chem. Soc. 1992, 114, 9969.
- [10] G. DeMunno, F. Lucchesini, R. Neidlein, *Tetrahedron* 1993, 49, 6863; F. Ellinger, A. Gieren, Th. Hübner, J. Lex, F. Lucchesini, A. Merz, R. Neidlein, J. Salbeck, *Monatsh. Chem.* 1993, 124, 931; R. Neidlein, F. Lucchesini, A. Gieren, T. Hübner (1987), Jahrbuch der Max-Planck-Gesellschaft 1989, 144; *Chem. Abstr.* 110, 951, 129 q.
- [11] R.A. Dalton, R.F. Curtius, Nematologica 1963, 9, 357; F.J. Gommers, ibid. 1972, 18, 458; G.F.Q. Chan, G.H.N. Towers, J.C. Mitchell, Phytochemistry 1975, 14, 2295; T. Arnason, G.F.Q. Chan, C.K. Wat, K. Downum, G.H.N. Towers, Photochem. Photobiol. 1981, 33, 821; J. Kagan, G. Chan, Experientia 1983, 39, 402; T. Arnason, J. R. Stein, E. A. Graham, C.K. Wat, G.H.N. Towers, Can. J. Bot. 1981, 59, 54; T. Arnason, T. Swain, C.K. Wat, E.A. Graham, S. Partington, G.H.N. Towers, Biochem. Syst. Ecol. 1981, 9, 63; D.E. Champagne, T. Arnason, B.J.R. Philogene, G. Campbell, D.G. McLachlan, Experientia 1984, 40, 577.
- [12] G. Campbell, J.D.H. Lambert, T. Arnason, G.H.N. Towers, J. Chem. Ecol. 1982, 8, 961.
- [13] W. E. Bennett, J. L. Maas, S. A. Sweeney, J. Kagan, J. Chemosphere 1986, 15, 781.
- [14] J.E. McMurry, Acc. Chem. Res 1983, 16, 405.
- [15] F. Diederich, Y. Rubin, Angew. Chem. 1992, 104, 305; ibid. Int. Ed. 1992, 31, 1101; F. Diederich, Nature (London) 1994, 369, 199; H. Genin, R. Hoffmann, J. Am. Chem. Soc. 1995, 117, 12328.
- [16] R. F. Heck, 'Palladium Reagents in Organic Synthesis', Academic Press, London, 1985.
- [17] A. Töhl, Ber. Dtsch. Chem. Ges. 1894, 27, 665; K. Auwers, T. V. Bredt, ibid. 1894, 27, 1741.
- [18] R. M. Kellogg, A. P. Schaap, H. Wynberg, J. Org. Chem. 1969, 34, 343.
- [19] S. Gronowitz, Acta Chem. Scand. 1961, 15, 1393.
- [20] M. Janda, J. Šrogel, I. Stibor, M. Nemec, P. Vopatrna, Synthesis 1972, 545.
- [21] J. Fröhlich, personal communication.
- [22] S. Takahashi, Y. Kuroyama, K. Sonogashira, N. Hagihara, *Synthesis* **1980**, 627; W. B. Austin, N. Bilow, W. J. Keliaghan, K. S. Y. Lau, J. Org. Chem. **1981**, 46, 2280.
- [23] T.X. Neenan, G.M. Whitesides, J. Org. Chem. 1988, 53, 2489.
- [24] S. Gronowitz, 'The Chemistry of Heterocyclic Compounds', J. Wiley and Sons, New York, 1985, Vol. 44, part 5.
- [25] R. Diercks, K. P. C. Vollhardt, Angew. Chem. 1986, 98, 268; ibid. Int. Ed. 1986, 25, 266; E. Müller, Synthesis 1974, 761.
- [26] J. Fröhlich, 'Progress in Heterocyclic Chemistry', Pergamon Press, Oxford, 1994, Vol. 4, pp. 1-36.

766